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Abstract

This paper analyzes the optimal management of a pandemic (stay-at-home and vacci-

nation policies) in a dynamic model. The optimal lockdown policies respond to the spread

of the virus with significant restrictions to employment, followed by partial loosening be-

fore the peak of the epidemic. Upon the availability of a vaccine, the optimal vaccination

policy has an almost bang-bang property, despite the loss of immunity of the vaccinated:

vaccinate at the highest possible rate, and then rapidly converge to the steady state. The

model illustrates interesting trade-offs as it implies that lower hospital capacity requires

flattening the infection curve and hence a more stringent lockdown, but lower vaccination

possibilities (both the likelihood of a vaccine and the vaccination rate) push the optimal

lockdown policy in the opposite direction, even before the arrival of vaccine. The model

implies that the “dollar” value of a vaccine decreases rapidly as time passes with the rein-

fection rate being an important determinant of the monetary value. The value that society

assigns to averting deaths is a major driver of the optimal policy. The sensitivity analysis

shows that even for reasonable bounds of the economic and epidemiological parameters,

the timing and the magnitude of the optimal policy varies substantially.
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1 Introduction

How does the optimal response to an epidemic—both in terms of the nature of “stay-at-home”

policies that restrict employment as well as the intensity of vaccination efforts—depend on

the features of the economy and the epidemiological parameters? To make progress in under-

standing the answer to this question, we study the problem faced by a planner that can impose

restrictions on employment and, when a vaccine becomes available, has to decide on the (costly)

intensity at which the population can be vaccinated.

We study a standard continuous time infinite horizon model. We assume that individual

preferences depend on individual consumption, and that social preferences take into account

the utility loss associated with deaths. In addition, we model the impact of a virus using a

standard SIRS model, and we constrain the policy space taking into account limitations imposed

by the existing public health infrastructure. Another important dimension of the model is that

a fraction of individuals that have been vaccinated lose immunity. That requires additional

rounds of vaccination for individuals previously vaccinated.

We assume that at the beginning of the epidemic—what we label Phase I— the only policy

available to the planner is a stylized version of a “stay-at-home” policy that, simultaneously,

restricts employment and lowers the rate of transmission of the epidemic. Phase I ends when a

vaccine becomes available and the economy enters Phase II. We view the arrival of a vaccine as

a random event and take the probability distribution as exogenous. At this point, the planner

has a second tool to control the epidemic: the speed at which the population can be vaccinated,

which we also view as requiring resources. This less-than-instantaneous ability to vaccinate the

population is a novel feature of our model and one that has significant effects on the optimal

policy, even before the vaccine becomes available.

On the theoretical side, we show that the model has a steady state. In the case where the

reinfection rate is low (essentially the case in which the economy is dealing with an epidemic and

not an endemic problem), we show that along a path in which a vaccine or a treatment never

becomes available (Phase I)—although optimal policies take into account that the probability

is positive—the epidemiological variables converge to the same steady state as those of another

economy that has access to a vaccine/treatment. This implies that the economic value of a

vaccine decreases over time. To the extent that the private value of a vaccine moves with the

social value, the model predicts that fewer resources will be allocated by the private sector to

finding a vaccine as the epidemic progresses.

We study a quantitative version of the model. We consider a variety of scenarios to cap-

ture the uncertainty associated with the true value of epidemiological parameters, the effective

availability of health care resources in the case of an epidemic, and the differential case fa-

tality rates associated with situations in which hospital capacity is exceeded. Our findings

about optimal policies (both employment and vaccination) are very sensitive to assumptions

about the appropriate value of the relevant parameters (epidemiological as well as public health

infrastructure).
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We find that in the initial phase (Phase I) it is generally optimal to impose large restrictions

on employment in the initial weeks of the epidemic. Depending on epidemiological parameters,

the restrictions are slowly removed. In all cases employment is increased before the epidemic

peaks. We also find that the lower the probability of a vaccine or the lower the speed at which

the population can be vaccinated, the less-restrictive are the employment policies. The reason

for this is standard: If there is no tool to fight the virus there is no need to flatten the curve as

the same number of individuals will perish. The only force that counterbalances this result is

the assumption that the case fatality rate increases when hospital capacity is exceeded. In this

case, flattening the curve can result in fewer deaths. Thus, the optimal policy has to balance

these different factors that have opposing effects.

The details of how a vaccine interacts with other policies is novel and interesting as ar-

rival of a vaccine (Phase II) does not imply—depending on the state of the epidemic—that

all restrictions on employment should be lifted. Moreover, availability of a vaccine may result

in an increase in the spread of the epidemic. This last somewhat counterintuitive result can

be easily explained: Availability of a vaccine increases the rate at which the susceptible pop-

ulation shrinks and this reduces the future contagion rate. This implies that the cost of the

epidemic in terms of future deaths and consumption decreases (less future contagion) and that,

consequently, the marginal cost in terms of current output should decrease as well. This last

step requires a liberalization (more contact among individuals) that, in turn, pushes up the

contagion rate. Our results imply that for a developed country like the U.S., it is in general

optimal to vaccinate at the highest possible rate (institutionally determined) when the vaccine

first becomes available. The optimal vaccination policy rapidly converges to its long-run value

(which is non-zero in the case of reinfections). Thus, the optimal vaccination policy has almost

a bang-bang quality.

The model implies that for a large range of plausible scenarios the social value of a vaccine

decreases rapidly as time goes by. In our quantitative model (that allows for the endemic nature

of the virus) the dollar value of a vaccine decreases by about 60% after one year. The specific

dollar value depends critically on the reinfection rate and the social value of life.

As mentioned before, we study a fairly large range of plausible scenarios. Even though we

find our quantitative results useful we are fully aware that their quality is no better than the

quality of the data that we use. At this point there is significant uncertainty about many of the

key parameters, both those corresponding to the economic model as well as those implicit in

the epidemiological mode. Our findings suggest that the optimal policy is very sensitive to the

specific parameterization. It is not clear to us what to conclude from this other than showing

the importance of acquiring information (for example, adopting a large program of random

testing). We also view our results as providing policymakers with a framework of reference to

study worst-case scenarios.

Our work falls within the large and growing macro literature that emphasizes the trade-

off between managing the epidemic by controlling the spread of the infection and economic

outcomes. There is a large (and growing) number of papers that use optimal control techniques
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to explore the management of an epidemic.1 This paper is closest to the recent work of Alvarez,

Argente, and Lippi (2020), Acemoglu et. al (2020) and Gonzalez-Eiras and Niepelt (2020). The

major difference from the other planner models is that we take a different approach to modeling

the effect of the availability of a vaccine, and this allows us to evaluate the consequences of

different arrival times. This permits us to discuss how the optimal policy and the value of a

vaccine depends on both the epidemiological variables as well as the implicit value of life. We

also formalize the role of hospital capacity, explicitly allowing for reinfections due to loss of

immunity, both of which are key determinants of optimal policy. Even though our formulation

emphasizes a control approach, in appendix 4 we sketch a simple model that allows for a

behavioral component and captures individual response to the risks associated with infection

(see, for e.g., Bisin and Gottardi (2021) for a model with externalities).2

Section 2 presents the model and section 3 discusses some theoretical results. Section 4

presents our quantitative findings. Section 5 briefly discusses ongoing work on extensions, and

section 6 offers some preliminary concluding comments.

2 Model

We study a standard continuous time macro model. We assume that there is one good that is

produced exclusively with labor. There are two policy variables that we study. First, a type

of “stay-at-home” limit on the utilization rate of the labor force, which has two impacts: It

decreases output and, simultaneously, reduces the rate of transmission of a virus since fewer

individuals are in contact with others. The second policy is the rate at which individuals can

be vaccinated when a vaccine becomes available. This rate is also subject to an institutional

constraint that captures both delays in producing a viable vaccine in large quantities (even after

one has been discovered) and the logistical arrangements associated with mass vaccination.

We assume that there is a representative agent that cares about consumption. Social pref-

1See Alvarez, Argente, and Lippi (2020), Gonzalez-Eiras and Niepelt (2020), Acemoglu, Chernozhukov,

Werning, and Whinston (2020), Jones, Philippon, and Venkateswaran (2020).
2Acemoglu et al. study optimal lockdown for heterogenous agents and find that the optimal policy calls

for different lockdown strategies for different individuals. Gonzalez-Eiras and Niepelt present a general model

but they concentrate on special cases in order to find closed-form solutions. Appendix 4 has a partial list

of the rapidly growing literature on the economic effects of COVID-19. Other papers explore the effects of

different policies in the dynamics of the epidemic (i.e., social distancing, lockdown, testing, etc.) in SIR models

developed by Kermack and McKendrick (1927). See for example, Adda (2016), Atkeson (2020a,2020b), Aum,

Lee, and Shin (2020), Avery, Bossert, Clark, Ellison, and Ellison (2020), Azzimonti et al. (2020), Baqaee et al.

(2020), Bassetto (2020), Berger, Herkenhoff, and Mongey (2020), Bodenstein et al. (2020), Chang and Velasco

(2020), Droz and Tavares (2020), Eichenbaum, Rebelo, and Trabandt (2020a,b),Farboodi, Jarosch, and Shimer

(2020), Fang, Wang, and Yang (2020), Glover, Heathcote, Krueger, and Ŕıos-Rull (2020), Hsiang et al. (2020),

Neumeyer (2020), Piguillem and Shi (2020), Pindyck (2020), Shao (2020), Wang et al. (2020). In this paper,

the labor market is fairly stylized, but this is something that has been addressed in other papers that abstract

from the optimal policy. See, for example, Bick and Blandin (2020), Kapicka and Rupert (2020), Dingel and

Neiman (2020), Kurman, Lale, and Ta (2020).
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erences are simply individual preferences adjusted (downward) by the disutility cost of deaths.

Thus, from society’s perspective there are two reasons to control an epidemic: the direct loss of

output associated with lower labor force availability and, in our baseline, the additional disu-

tility cost of deaths associated with the epidemic. The details of how we model this disutility

are spelled out below.

We consider two phases that differ in the availability of a vaccine.

• Phase I : This is the period in which there is no vaccine available. The only available tool

is a “stay-at-home” type of policy that reduces employment. We use a single variable to

capture a variety of interventions that affect both the rate of transmission of the virus and

the level of employment. We leave for future work the analysis of policies that are likely

to vary in their impact, such as social distancing, age-related limitations and complete

lockdown, among others.

• Phase II : We assume that the availability of a vaccine arrives at an exogenous rate and

at that time the economy enters Phase II. The planner has, in addition to the lockdown

policy, the ability to control (up to a maximum) the speed at which the population is

vaccinated.3

2.1 The Economic Model

We assume that there is only one good that is produced linearly using labor. If the available

labor force is denoted L and only a fraction φ ∈ [0, 1] is utilized in production, utility is

u(φwL−cV (µ(1−V ))), where the second term captures the cost in terms of output in vaccinating

a population of size 1− V. This is the unvaccinated population. This term is operative only in

Phase II when a vaccine is available.

Social preferences depend on the utility derived from consumption (we abstract away from

leisure at this stage) and an additional term that captures the disutility associated with the

loss of life. The instantaneous social payoff is

u(φwL− cV (µ(1− V )))−∆(D1, D+).

We make standard assumptions about the utility function u. In the simple model, L equals the

(fixed) labor force minus those infected individuals who have been identified as such. In general

we assume that the function ∆(D1, D+) is increasing and convex. The variables (D1, D+)—

more thoroughly described later—capture case fatality rates depending on whether the hospital

capacity is reached.

Society’s preferences are then a function of consumption and deaths. Let Tη be the (random)

time at which the economy transitions to Phase II (that is, when vaccination becomes available).

3Alvarez et al. (2020) assume that most of the population can be instantaneously vaccinated.
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Formally, preferences are given by

U = E{
∫ Tη

0

e−ρt
[
u(φtwLt)−∆(D1

t , D
+
t )
]
dt (1)

+e−ρTη
∫ ∞

0

e−ρt
[
u(φTη+twLTη+t − cV (µTη+t

(
STη+t + (1− ζ

)
ITη+t))−∆(D1

Tη+t, D
+
Tη+t)

]
dt}

where the expectation is taken over the realization of Tη.

Our description of the model ignores any behavioral component, that is, formally, it ignores

how individuals adjust their behavior—in our case the only relevant dimension is their labor

supply decision—depending on the risk of infection. In the Appendix we sketch a version of

the model that includes behavioral components and that, under a particular transfer policy,

aggregates to the version that we use in the text.4

2.1.1 Special Case

The special case that we use for the quantitative exercise assumes that the instantaneous payoff

is

N ln (wφL− c
¯
)−N∆(D1, D+).

In this formulation, c
¯

is the minimum level of consumption and N is population size. We

assume that the function ∆(D1, D+) has the following form:

∆(D1
t , D

+
t ) = M0

[
kaD

1
t + keD

+
t

]
, (2)

where

D1
t = χhζκI,

D+
t =

(
χH − χ

)
κH
(
hζI − H̄

)+

This formulation has two elements. The cost to society of one additional death (in utility terms)

is M0. If we assume that this is equal to the utility of the remaining lifetime T, and the value

of an additional year is a multiple, υ, of annual output, then we can approximate the utility

loss associated with one death as

M0 = ln (υw − c
¯
)

1− e−ρT

ρ
.5

We take D1
t as a measure of deaths that occur before hospital capacity is reached. To

simplify, we view this flow as the product of the flow of people leaving the symptomatic infectious

state, ζκI, times the fraction hospitalized, h, times the fraction of those hospitalized that die, χ.

D+
t has a similar interpretation, except that the death rate,

(
χH − χ

)
, is higher. We also allow

4We thank Piero Gottardi for encouraging us to think about the behavioral dimension.
5There are different approaches to identify and measure the valuation of life. Examples of some of the options

in the context of the analysis of epidemics are Greenstone and Nigam (2020) and Hall, Jones and Klenow (2020).
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for a shorter duration (κH). This term is only effective when the number of people hospitalized

exceeds the hospital capacity. This is captured by the term
(
hζI − H̄

)+
.6 Total case fatalities,

Dt, is simply the sum of D1
t and D+

t . Finally, the parameters ka and ke allow for the possibility

that society values deaths that occur because hospital capacity is exceeded differently from

those deaths that occur when hospitals have available beds.

2.2 The Epidemiological Model

Following the literature, we assume that the dynamics of an epidemic can be reasonably approx-

imated by a version of the standard SIR model, augmented to allow for vaccination, making

it SIRV .7

Let S be the number of susceptible individuals. I is the total number of infectious indi-

viduals. This includes both symptomatic and asymptomatic. We assume that only a certain

fraction, ζ, is identified as infected/symptomatic. These individuals do not contribute to the

labor supply, and we assume that they do not infect susceptible agents. Effectively, we assume

that they are quarantined. The number of infected individuals who are asymptomatic is then

(1− ζ)I.. R the population of resistant individuals. In Phase II there exists another category:

vaccinated individuals, which we denote by V.

Therefore, the potential labor force, L, is given by

L = S + (1− ζ)I +R + V. (3)

Since we normalized the population to one, this is

L = 1− ζI. (4)

Then given a value of the stay-at-home policy φ, the fraction of susceptibles and infectious in

the population is φS and φ(1− ζ)I respectively.8

6It is not obvious that the right approach is to posit that total rather than “excess” deaths should enter social

preferences. For example, a large number of individuals die every year due to simple influenza. At the same

time, there are relatively simple policies that could potentially avert many of those deaths (e.g., free vaccination

and creating “vaccination stations” in convenient places, such as supermarkets and public transportation hubs,

to reach a large fraction of the population, including those that do not have ready access to healthcare). We

view the absence of those policies as a revealed preference type of argument against including all deaths in the

baseline.
7One of the most widely cited epidemiological studies of the COVID-19 epidemic is the Imperial College model

in Ferguson et.al. that uses the SIR model. Economic analyses of the COVID-19 epidemic from an economic

point of view relying on the SIR model include Alvarez et al. (2020), Atkeson (2020), Fernandez-Villaverde and

Jones (2020).

We are aware of the limitations of the model. See Korolev (2020) for example. An alternative forecasting

model, the IHME model also appears to have serious limitations. See Marchant et al. (2020)
8In this setting, φ is a summary of the effects of a variety of different policies like lockdown, social distancing,

school closure, mask wearing, travel restrictions and centralized quarantine. There is some evidence (see Chen
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The model is then described by the following equations:

Ṡ = −β(φS)(φ(1− ζ)I)− µS − πS + γ(1− S) (5)

Ṡ = −βφ2(1− ζ)SI − µS − πS + γ(1− S).

The first term is the standard matching function of the SIRS model, while the second term, µS,

is the population that becomes resistant as a result of vaccination.9 The term πS is a measure

of the flow of individuals that, even in the absence of contact, leave the S state because they

become infected. This captures exogenous sources of infection. In our quantitative exercise

we assume that π is such that the expected duration of the time in between infections is 40

years. The last term, γ(1− S), captures both the rate at which resistant individuals lose their

immunity and the entrance of new susceptible individuals into the population.

The stock of infectious evolves according to

İ = βφ2(1− ζ)SI + πS − (κ+ µ+ γ) I. (6)

The last term includes both those who leave the infectious state because they either recover or

die, and the fraction of the asymptomatic infectious population that is vaccinated. We assume—

but there is mixed evidence on this—that vaccinated individuals cannot transmit the virus. It

is easy enough to consider the case in which only a fraction effectively become vaccinated.

Finally the stock of vaccinated individuals satisfies

V̇ = µ (1− V )− γV. (7)

We assume that the population of candidates for vaccination includes those individuals who

have not been vaccinated before and those that have lost their immunity. In the model, V is

intended to capture individuals who have immunity. Thus, if Ṽ is the stock of individuals who

have been vaccinated (and have not lost immunity) and if ς is the effectiveness of the vaccine,

we take V = ςṼ , and we adjust µ to capture this effectiveness factor.

Our epidemiological model is a augmented version of the standard SIRS model. We depart

from the basic formulation in allowing for vaccination,V , in phase-II and the possibility of

exogenous infection as represented by π.

For a large set of values (µ, φ), the epidemiological model has a unique (and locally stable)

steady state. However, the linear approximation to the dynamical system near the steady state

has complex roots. Thus, for a fixed policy (including the no-intervention policy described

below) the epidemic displays multiple “waves” of decreasing severity.

For γ = π = 0 (no loss of immunity and no exogenous infection) the model is a model of

an epidemic in the sense that, in the long run, It = 0. For positive values of γ and/or π, this

and Qiu (2020)) that the effects of these NPIs are quite heterogeneous in terms of consequences of the epidemic.

However, at the level of aggregation in this model they correspond to an average of feasible combinations. Future

work will deal with heterogeneity in policies (different φ)
9Strictly speaking, the parameter µmeasures the rate at which individuals leave the susceptible state weighted

by the effectiveness of the vaccine.
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is a model of an endemic disease as infections are recurrent and in the steady state a nonzero

fraction of the population is in the infectious state.10 However, for small values of (γ, π) the

long run fraction infected can be made arbitrarily small and the endemic case is very close to

the epidemic case.

Finally, we label the path of the epidemic when the policy is no intervention (formally this

corresponds to φt = 1 and µt = 0) the uncontrolled case, and we denote the resulting path by

(Ŝ, Î).

The number of deaths averted up until time T , GT , under a policy {φs, µs} is

GT =

∫ T

0

(
D̂s −Ds

)
ds,

where Ds = D1
s+D+

s are total deaths under a given policy and D̂s = D̂1
s+D̂+

s are the equivalent

deaths under the no intervention policy.

The measure of relative deaths, NT is

NT =

∫ T

0

D̂s

Ds

ds,

and the cumulative output cost (relative to the full employment case) is

OT =

(
1

T

)∫ T

0

φs (1− ζIs) ds.

By comparing GT and OT we can estimate the output cost per death averted.11

3 Analysis of the Model

Since the problem faced by the planner in Phases I and II is different, we start by studying the

optimal policy in Phase II. We then discuss Phase I.

3.1 Phase II

In this Phase vaccination is available and the planner’s objective function is

F (S, I, V ) = max
{φt}{µt}

∫ ∞
0

e−ρt
[
u(φtw(1− ζIt)− cV (µt (1− Vt)))−∆(D1

t , D
+
t )
]
dt, (8)

10At the time of this writing it is not clear what the duration of immunity associated with COVID-19 is.
11It is clear that our measure of output cost ignores many other consequences of drastic reductions in economic

activity. For example, all the managerial human capital that is lost (or reallocated to less-profitable activities)

is not included in our measure. Moreover, to the extent that a given policy has implication for non-COVID

deaths (e.g., deaths of despair, depression), our measure also ignores this. Thus, we believe that our formulation

is somewhat conservative.

9



subject to equations (5), (6) and (7) and S0 = S, I0 = I and V0 = 0. The maximization is

subject to 0 ≤ φt ≤ 1 and 0 ≤ µt ≤ µ̄, where µ̄ is a measure of the economy’s maximal speed

to vaccinate the population.

The optimal stay-at-home policy depends on the difference of the marginal shadow values

of the stocks of infectious and susceptibles. Formally, interior case is when φ ∈ (0, 1), and the

optimal φ solves (details in Appendix 1)

u′(φw(1− ζI)− cV (µ(1− V )))(1− ζI)

2βφ(1− ζ)SI
= (FS − FI) . (9)

For a given state (S, I, V ) the left-hand-side is decreasing in φ. FI measures the contribution of

an additional infected individual to the value of the problem, which is negative, and so is FS for

some combinations of the state (S, I, V ). However, in all cases, FS − FI > 0 since 100% of the

susceptibles are in the labor force but only 1−ζ of the infected. Why is it that the optimal policy

depends on the difference FS − FI? The reason is simple: A decrease in φ decreases the rate of

infection (a positive), but it also slows down the decrease in the stock of susceptibles (a bad)

and the optimal policy depends on the relative strength of the two effects. Thus, −FI − (−FS)

is the net gain from lowering φ. This net gain must be equal to the marginal welfare cost that is

captured by the left-hand-side of equation (9). Decreases in φ are associated with larger gains

of reducing the rate of infection relative to the rate at which the susceptible population shrinks.

This gap is large at the beginning of an epidemic, as the stock of susceptibles is high and the

level of infectiousness is low.

Why is the planner flattening the curve in this version of the model? There are two rea-

sons. First, given our assumption about the impact of reaching hospital capacity, the term

−∆(D1, D+) is a concave function of I. This implies that smoothing the time path of deaths

results in utility gains. Second, the existence of a technology with a capacity constraint in-

duces another form of concavity that, in turn, makes smoothing the path of It optimal. As

either η → 0 and/or µ̄ → 0, Phase I is permanent, which implies that the only reason for the

planner to decrease output is to distribute fatalities over time to avoid the higher fatality rate

associated with exceeding the hospital capacity. Put differently, we expect that the lower the

value of (η, µ) the higher the value of φ since the second “life saving technology” (vaccine) is

less valuable.

Under some conditions the model has a steady state. For sufficiently small values of (γ, π)

(the rate at which immunity is lost in the population and the rate at which exogenous infections

occur) the steady state displays no output loss (φ∗ = 1) and no vaccination (µ∗ = 0). We

summarize this result in the following proposition.

Proposition 1 (Phase II: Steady State) Assume that the utility function is strictly increas-

ing and strictly concave and that the marginal cost of vaccination is positive even at zero (that

is, c′V (0) > 0); then, for a small-enough value of (γ, π), there exists a steady state characterized
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by φ∗ = 1 and µ∗ = 0, and the epidemiological variables are

S∗ =

(
1 +

κ+ γ

β(1− ζ)

γ + π

π

)
−

√(
1 +

κ+ γ

β(1− ζ)

γ + π

π

)2

− 4
κ+ γ

β(1− ζ)
,

and

I∗ =
γ

κ+ γ
(1− S∗) .

Proof. See Appendix 1

If (γ, π) are sufficiently large, the steady state is interior.

3.2 Phase I

In this Phase there is no vaccine. We assume (as in Alvarez et al. (2020)) that vaccines become

available at the Poisson rate η. The planner’s problem is

W (S, I) = max
{φt}

E

[∫ Tη

o

e−ρt
[
u(φtwLt)−∆(D1

t , D
+
t )
]
dt+ e−ρTηF (STη , ITη , V = 0)

]
,

where the expectation is taken over the distribution of the stopping time Tη, which gives the

first time that the Poisson process jumps. The expected time until a vaccine becomes available

is 1/η.

It is interesting to study what happens in Phase I as t → ∞ along a realization in which

the vaccine never arrives. The following proposition summarizes this case.

Proposition 2 (Phase I: Pseudo Steady State) The Phase I model has a steady state that

coincides with the steady state in Phase II.

Proof. See Appendix 1

This result says that after a long enough period of time the availability of a vaccine does not

have a large impact on the optimal policy. Thus, the social value of a vaccine—measured as the

impact on the continuation value— decreases to zero as t→∞. This, of course, ignores future

epidemics that can be averted using vaccines since it only applies to situations characterized by

small (γ, π). In our quantitative section we show that the decrease in the value of the vaccine

(although not to zero necessarily) is a robust feature.

This result has some implications for how to finance a vaccine. If the winner receives a

patent, the economic value of that patent—again in the case of one epidemic—goes to zero

as time goes by because the epidemic is being controlled. Specifically, the convergence result

implies that for a large Tη, the change in optimal policy is small. One consequence of this is that

firms that have to allocate resources to produce a patent see their potential payoff decreasing

as time goes by, and intuitively, this results in lower investment.

This suggests that financing a vaccine with a prize with a fixed value can potentially be

a more efficient mechanism relative to a patent—at least in terms of inducing resources to be

allocated—to produce a vaccine in a shorter period.
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4 Quantitative Results

In this section we present some results for a quantitative version of the model. We take our

time unit to be a week. We report the complete list of parameters used in Appendix 3. Here,

we describe the more significant assumptions underlying our baseline case:

• R0 is 2.8, and for each diagnosed case there are approximately four asymptomatic cases

(ζ = 0.25).

• We assume that the case fatality rate (as a fraction of symptomatic cases) is slightly below

1.7%. (It is 1.8% in the U.S. at the time of this writing.) We assume that an individual

remains infectious for about three weeks.

• We assume that 25% of the total hospital capacity can be allocated to COVID cases.

This corresponds to 2.8× 0.25 beds per thousand people.

• Vaccine: We assume that, in expectation, it takes about 50 weeks for a vaccine to become

available (Phase II).12 We also assume that the upper bound of the speed at which the

population can be vaccinated is µ̄ = 0.036. This is consistent with vaccinating 90% of the

population in a year and a vaccine effectiveness of 0.85.

To compute the results we first discretized the continuous time HJB equation and then

solved the weekly model using value function iteration. Given the model is highly non-linear,

we solve the problem over a fine non-uniform grid and restrict the space to 0 ≤ S + I + V ≤ 1.

(See details in Appendix 2.)

4.1 Baseline Case

The optimal stay-at-home policies for each Phase are depicted in Figure 1. Panel (a) shows

the optimal policy in phase I, φI , as a function of state space (S, I). Panel (b) shows φII as a

function of (S, I) for V = 0.

12This is η = 1/50.
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(a) Phase I (φI) (b) Phase II (φII at V = 0)

Figure 1. Optimal φ
Some interesting results include the following:

1. In Phase I (and Phase II) the optimal policy calls for no interventions for low levels of I.

(The yellow area corresponds to φ = 1.)

2. By construction, the optimal policy is a function of the state (S, I) (in Phase I). Any

policy that chooses the severity of the stay-at-home policy considering only infectious (or

deaths) is bound to be suboptimal.

3. The optimal policy in Phase II (when the vaccine is available and reported at V = 0,

which is the state at the time of the switch) is slightly “shifted to the left” relative to

Phase I, and it implies that, for all states, Phase II imposes more severe “stay-at-home”

restrictions. In panel (b) the green-blue areas indicate more restricted choices. The reason

for this is simple: If there is no vaccine ever, the optimal policy is close to “do nothing,”13

and it is only when there is something that can save lives (a vaccine in our setting) that

it pays to restrict output to allow more individuals to get vaccinated.

4. There are large subsets of the state space that even if a vaccine is available it is optimal

to restrict employment. For example, if 70% of the population is susceptible and 10%

is infectious, then the optimal policy is to restrict employment to about 60% of the full

employment level.

Any simulation must make an assumption about the realization of Tη, the time at which

Phase II (vaccine) arrives. In our baseline we assume that Tη = 50, that is, that a vaccine

becomes available after about 50 weeks, which is also the expected time of arrival.

Figure 2 shows the path of the relevant variables under the optimal policy. In the case of

the stock of infectious individuals, we also include the value that it would take if the policy is

φt = 1 (referred as W/O intervention or the uncontrolled epidemic).

13Strictly speaking the model implies that φ < 1 is optimal to distribute deaths over time in order to minimize

the extra fatality rate associated with exceeding hospital capacity.
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(a) Infection (b) Optimal Lockdown (φ)

(c) Vaccination (d) Optimal Vaccination (µ)

Figure 2: Baseline Paths

The results in the uncontrolled case are independent of the economic model and are driven

by the assumptions embedded in the epidemiological model. In the absence of interventions/

controls, the epidemic would peak at about 8 weeks, and about 27% of the population would

be infectious at the time. The model implies that in the absence of any intervention there is a

second wave that starts around week 40 and peaks in week 70 when 5.2% of the population is

infected. In the absence of a policy (i.e., φ = 1) there is a significant number of deaths.

Under the optimal policy the infectiousness curve (in red) is indeed flattened, and it takes

about 10 weeks for the epidemic to peak. At the time of the peak, I is 7.5%. Under the optimal

policy there is no second wave.

Panel (b) of Figure 2 displays the path of the optimal lockdown policy. Initially (in the first

2-3 weeks) there is a small lockdown that quickly increases, and it implies that employment is

around 70% of the normal. Starting in week 12 there is a slow partial liberalization that ends

in week 50 when all restrictions are lifted (φ = 1). Thus, the optimal policy starts relaxing the

stay-at-home constraint significantly before the peak of the epidemic. In this simple model

the time path of φ is very close to the time path of output. Thus, output completely recovers

in about a year.

Panel (c) shows the evolution of the stock of vaccinated individuals. Starting in week 50 the
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optimal policy is to vaccinate as fast as possible (see Panel (d)), and the stock of vaccinated

agents stays relatively constant at about 54%. The optimal vaccination rate has an almost

bang-bang property to it: Initially it hits the upper bound and then rather sharply settles into

its long-run value. In the long run it is optimal (for these parameter values) to continuously

vaccinate individuals because of three factors: loss of immunity, vaccines that are not 100%

effective and exogenous infections (this is quantitatively very small).
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Figure 3. Baseline: Time Paths

Figure 3 shows the time paths corresponding to average output since the beginning of the

epidemic (current output closely tracks φt) and the observed reproduction number. The largest

drop in average output occurs in the first 20 weeks. After that point—which corresponds to

higher values of φ—average output steadily increases. The output cost of the optimal policy

is significant. For the first year the economy is operating on average at about 83% capacity.

In the long run (about 7 years) the average output loss over the whole period is close to 2.5%.

This is large.

Panel (b) of Figure 3 displays the time path of Rt. In our calibration R0 = 2.8, but initially

there is a large drop. It is 1.6 in week 3 and 1.10 in week 8. Starting in week 14 Rt fluctuates

around 1 with a slight upward trend that peaks at 1.05 in week 50. This result shows that

simplistic policies (e.g., as advocated by Budish (2020)) that call for maximizing utility subject

to the reproduction number being less than one are not necessarily optimal. The optimal policy

is one where employment is increasing while the reproduction number is above one and getting

higher.

The only random element in the model is the time at which a vaccine becomes available. It

is not practical to report a large number of realizations, but it is interesting to discuss how the

optimal policy should react if a vaccine is available earlier than expected. In the next section

we describe one such realization.
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4.1.1 Baseline: Early Arrival of a Vaccine

How does an early arrival of the vaccine change the optimal management of the epidemic?

Figure 4 shows the outcome of our simulation for both the infection curve, It, and the optimal

policy, φ, when the vaccine arrives fairly early, at about week 25 compared to the baseline case

of week 50.

(a) Path of I (b) Optimal φ

Figure 4: Early Arrival of a Vaccine (Tη = 25)

By construction the first 25 weeks display an optimal policy that is identical to the baseline.

However, at that point the optimal policy (and the outcomes) differ significantly (the economy

enters Phase II) relative to the baseline. The most salient changes include the following:

1. At the time the vaccine arrives the optimal stay-at-home policy starts a fast liberalization

process, which is completed in about 5 weeks. The epidemic dies down a lot faster.

2. The number of averted deaths (not shown) is significantly higher than in the baseline and

the cost lower: Output gets back to normal 7 weeks after the vaccine arrives.

3. The optimal vaccination policy is similar to the base case: Vaccinate at the highest feasible

rate for about 5 months and then rather rapidly converge to the steady state.

In the model, availability of a vaccine plays a major role as it is the only technology that

is available to save lives. Positive surprises (early arrival in our case) is equivalent to a large

shock as measured by both the policy response and the consequences.

4.2 Uncertainty and Optimal Policies

How much faith should we put in our baseline results? One concern is that there is significant

uncertainty both about how a lockdown will affect economic outcomes and about the appro-

priate values of many epidemiological parameters. This is an unfortunate situation but one

that must be confronted head on. To convey a sense of how uncertainty affects the results, we
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present the implications of the model when we vary several environmental variables. We find

that the results are extremely sensitive to the underlying assumptions about the epidemiological

model (κ and R0) and to some parameters that capture, in a rough sense, the quality of the

health infrastructure (e.g., case fatality rate and vaccination speed).

Two Scenarios: Optimistic and Pessimistic We start the exploration of the role of

uncertainty by considering deviations from the baseline in three dimensions: the case fatality

rate, hospital capacity and the speed at which 95% of the population can be vaccinated.

We next describe the results for what we label optimistic and pessimistic scenarios.

• Optimistic: High vaccination rate (35% higher than in the baseline) and lower case fatality

rate
(
χ = 0.25, χH = 2.5χ

)
and 50% higher hospital capacity

• Pessimistic: Lower vaccination rate (35% lower than in the baseline) and higher case

fatality rate
(
χ = 0.35, χH = 2.5χ

)
The results for the path of the epidemic and output are in Figure 5.

Path of It Optimal φ

Figure 5. Optimistic and Pessimistic Scenarios

The differences are significant. At the peak of the epidemic the fraction of the population

that is infectious can range from 7.8% (in the optimistic case) to 5.9% (in the pessimistic case).

In the first 3-4 weeks the loss of output is somewhat similar in all three cases. However, in the

optimistic scenario recovery occurs early and it is very fast. Monthly output is 100% of normal

after 7 1/2 months. On the other hand, in the pessimistic case it takes over 12 months to reach

that level.

Table 1 presents some summary statistics for the baseline and the two alternative scenarios.

The differences in loss of output both in the short- and medium-run are large: In the pessimistic

scenario the loss of output is twice as high as in the optimistic scenario. There is also a significant

difference in the speed of recovery. In addition to the relevant economic variables, it shows the

number of deaths averted and the output cost per death averted. The range is large both in

terms of deaths averted (roughly 75% higher) and output cost per death averted (10% higher).
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Table 1: Scenario Comparison

Indicator Baseline Optimistic Pessimistic

Y loss (1Y) (%) 17.4% 12.2% 19.9%

Y loss (3Y) (%) 6.9% 5.0% 10.8%

Full Recovery (months) 12 7.5 12

Deaths Averted (%) (2Y) 0.56% 0.40% 0.70%

Cost per Death Averted ($) (2Y) 2.05M 2.09M 1.87M

The Impact of the Case Fatality Rate Our baseline assumes that the case fatality rate as

a fraction of symptomatic cases is about 1.7%, and this corresponds to χ = 0.30. We also explore

the impact on the path of the epidemic and the optimal policy of two other values: χ = 0.25

and χ = 0.35, adjusting fatality rate when cases exceed hospital capacity as χH = 2.5χ. These

correspond to case fatality rates of 1.4% and 2.5%, respectively. Figure 6 shows the results.

Path of It Optimal φ

Figure 6. The Impact of the Fatality Rate

The lower the fatality rate the less aggressive the policy: The epidemic is short-lived and the

economy recovers rapidly. The model implies that more-lethal epidemics result in more-severe

lockdowns as the human costs increases.

The Impact of the Speed of Vaccination Figure 7 displays the time paths of infections,

the optimal policy for the base case (µ̄ = 0.036), and a very low vaccination capacity (µ̄ =

0.001).
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Path of It Optimal φ

Figure 7. The Impact of Speed of Vaccination

The message is clear: When the ability to vaccinate is low (low µ̄) the optimal lockdown

policy before the vaccine arrives imposes fewer restrictions. The reason, as discussed before,

is that a low µ̄ implies the mitigation technology is not very productive and, hence, that the

planner should not give up a lot of output today waiting for a technology that, even when it

arrives, will not provide a fast solution. Thus, to the extent that µ̄ captures some dimension of

the public health infrastructure implies that countries with poorer health infrastructure should

adopt less-restrictive policies.

The Duration of the Infectious Period Figure 8 shows the effect of shortening the infec-

tiousness period (two and a half vs. three weeks).

Path of It Optimal φ

Figure 8. The Impact of the Duration of the Infectious Period

An epidemic characterized by a shorter infectious period has the property that, in the ab-

sence of controls, reaches a given fraction of the population faster. (In Figure 8 this corresponds

to the green curve, κ = 0.40.) This, in turn, implies that the optimal response is to initially

apply a slightly more severe lockdown policy and lift it sooner.14

14Even though the lockdown in the low κ case is more severe (lower φ) the speed at which the epidemic
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The Reinfection Rate Our model assumes that individuals lose immunity at a rate given

by γ. In the baseline the expected duration of immunity is about 50 weeks. In this section we

report the effect on the optimal policy of a much longer immunity period (over 76 years) that

approximates permanent immunity.

Path of It Optimal φ

Figure 9. The Impact of Rate of Reinfection

Figure 9 shows the path of infection and the optimal lockdown policy in these two cases.

Longer immunity does not have a large impact on the level of lockdown in the first few weeks,

but it implies that the economy recovers sooner. It also implies that the level of infections

is lower. This is driven by the transitory nature of the epidemic when the rate at which the

population losses immunity is very small.

Hospital Capacity In the baseline we assume that 25% of the beds per thousand people (2.8

× 0.25) are available for COVID patients. On a per capita basis this implies that H̄ = 0.05. In

this section we report the results associated with a 50% increase in hospital capacity.

Path of It Optimal φ

Figure 10. The Impact of Hospital Capacity

Higher hospital capacity results in smaller lockdowns (and of shorter duration). The level

of infections is higher.

evolves is higher: The ratio of Rt paths (Rt(0.4)/Rt(0.33)) is greater than one. Thus, the planner does not fully

compensate for the faster movement of the epidemic.
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Case Fatality Rates When Hospital Capacity is Exceeded The variable χH measures

the case fatality rate when the number of COVID cases exceed hospital capacity. The baseline

χ is 0.30 and the baseline χH = 0.75. We also consider an alternative χH = 0.9. The results are

in Figure 11.

Path of It Optimal φ

Figure 11. The Impact of Case Fatality Rates

Higher fatality rates above hospital capacity result in a policy that keeps cases at the point

where they do not exceed hospital capacity. This requires more-severe lockdowns and a lower

infections during the first year.

Expected Time Until a Vaccine is Available In the baseline the expected time until a

vaccine arrives is 50 weeks. We report the results in two alternative cases: fast vaccine arrival

(20 weeks) and slow vaccine arrival (100 weeks).

Path of It Optimal φ

Figure 12. The Impact of Expected Time to Develop a Vaccine

When the vaccine is expected to arrive soon, the optimal policy is more stringent. The

lockdown is more severe and infections and fatalities are lower. Why? The sooner the vaccine

is available the sooner the planner will have a means of avoiding deaths. In this case, it pays to

wait and keep fatalities low until the vaccine arrives. If the vaccine will take (in expectation)

a long time to arrive, the cost in forgone output becomes too high and the optimal policy is to

increase employment and output.
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The Shadow Price of Life In the baseline we assume that the planner uses υ = 20, which

implies that each life is valued at about $11 million. This figure is arbitrary but close to what is

currently used by Federal agencies in project evaluation. Here we report the effect of changing

the value of life to one quarter of a million (υ = 5) and $17 million (υ = 30).

Path of It Optimal φ

Figure 13. The Impact of the Shadow Price of Life

As expected, the higher the value that society puts on a human life the more severe the

lockdown and the smaller the fraction of people infected.

Taking Stock Our sensitivity exercises are not extreme. The values of the key parameters are

within the range of possible values about which, at this time, there is considerable uncertainty.

Nevertheless, the policy implications for these cases differ significantly in terms of the key

variable: how strict and how long is the optimal lockdown.

There is a clear message that emerges: policy makers face a difficult task in terms of choosing

the optimal lockdown policy and knowledge of the relevant epidemiological and public health

parameters is critical.

4.3 Optimal Vaccination Rate

In the previous comparative exercises we emphasized how the optimal lockdown policy responds

to changes in certain parameters. In this section we report the impact of some changes in the

basic environment on the optimal path of vaccination. We look only at changes that can

potentially induce significant deviations from the base case. Figure 4 summarizes our findings.
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(a) Vaccination Capacity (b) Value of Life

(c) Reinfection Rate (d) Duration Infectious Period

Figure 14: Optimal Vaccination Path

Overall, the optimal path of vaccination can be simply described as the following: Vaccinate

as fast as possible and then settle to the long run (steady state) value. Differences in vaccination

capacity have no impact on the long run (unless the capacity is binding). Panel (b) shows the

impact of the value of life. The differences are small. Since the optimal policy initially is

“vaccinate as fast as possible” the value of life has no impact. In the long run the vaccination

rate is lower only when the value of life is very low ($0.25M vs $11M in the baseline).

Lower reinfection rates (Panel (c)) imply that vaccination is more effective as fewer people

lose their immunity. This implies that the optimal policy makes a higher vaccination effort,

and this implies that it hits the upper bound for a much longer period of time and then sharply

decreases, to the steady state. Finally, Panel (d) shows the optimal vaccination when the

infectious period is lower. As in the case of a lower γ, this increases the effectiveness of the

vaccine and results in a much more aggressive vaccination policy.

4.4 The Value of Life and the Cost of Averting Death

In our base formulation of the social value of a life,

∆(D1
t , D

+
t ) = M0

[
kaD

1
t + keD

+
t

]
where M0 corresponds to the utility equivalent of the value of a statistical life.
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In this section we present the results of several different values of a statistical life (M0 in our

notation). The value that we use in our baseline assumes that the present value of consumption

of an individual who dies from the virus is $11.25 million. We also consider several other cases

indexed by the equivalent present value of consumption obtained from using a multiple of

earnings, as a way of measuring other monetary costs of death (labeled PV in Table 2).

Table 2: The Impact of the Value of Life

PV (Mill) Deaths Ave. Cost (M) (2Y) Y Loss (1Y) (%) Trough (months)

$0.26 0.52% 1.71 13.0 1

$11.25 0.56% 2.05 17.4 1.5

$16.99 0.60% 2.08 18.7 2

The results show that the valuation of life has a first-order effect on the optimal policy and,

moreover, that the effects are highly nonlinear (using the present value of forgone consumption

as the metric).

1. The higher the value of life the higher the loss of output and the slower the recovery.

2. The number of deaths averted (and the cost per death averted) vary as well. In particular,

the cost per death averted in the high valuation case is about 22% higher than in the low

case.

3. The optimal policy cannot be defined using the value of life. Put differently, even in the

case when a life is valued at $11.25 million it is optimal for the economy to spend only

$2 million to save a life.

4.5 The Social Value of A Vaccine

In order to evaluate the gains from a vaccine we compare the value (for each state (S, I)) of

being in Phase II (with a vaccine available) relative to the case when no vaccine is available.

Proposition 2 shows that even if a vaccine never arrives, the economy in a “permanent” Phase

I converges to the same steady state as in Phase II when the parameters (γ, π) are small. In

this case, if the difference between the total utility in each Phase is computed at a long enough

horizon, our theory predicts that the value of a vaccine is small. The interesting quantitative

question is to assess how much this social value changes for relatively short time horizons and

for other parameters.

Table 3 reports the dollar equivalent of the gains associated with the availability of a vaccine

for the baseline and the optimistic and pessimistic scenarios.
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Table 3: Value of a Vaccine (Trillion)

Arrival Time (weeks)

Scenarios 1 25 50

Baseline 3.16 2.06 1.34

Optimistic 2.10 1.07 0.87

Pessimistic 3.66 2.56 1.77

We include the gains at 3 points in time: at the beginning of the epidemic, 6 months into the

epidemic and a year after the beginning of the epidemic. As expected there is a monotonicity

corresponding to the results. The value of the vaccine increases as the environment gets worse.

The absolute values are large and range from $2.1 T to 3$.66T. This is roughly 10% of the

U.S. GDP (in the base case). In all three cases there is a significant decrease in the value

of a vaccine —about 45% of the original value—that becomes available after one year. This

decrease is driven by the change in the epidemic: More individuals are immune and hence the

social value of a vaccine is lower.

Table 4 contains the same information except that it is indexed by the present value of

consumption.

Table 4: Value of a Vaccine (Trillion)

Arrival Time

υ PV (Mill) 1 25 50

5 $0.26 2.63 1.29 1.00

20 $11.25 3.16 2.06 1.34

30 $16.99 3.30 2.30 1.41

The higher the value that society puts on a human life the more valuable the vaccine. In

all three cases the value after a year is about 35% of the initial value.

What does this say about how to finance a vaccine? Our model is too stylized to discuss

details of market failure. The values that we report correspond to a social valuation of a life.

We find that to the extent the market values lives in a similar way, the market value of a patent

decreases over time. (Table 4 gives options and reasonable bounds.) Our model predicts that

if private firms engage in a discovery “race,” then, as the prize gets smaller, the less-promising

candidate vaccines will be left out. Overall the private incentives decrease as time goes by if

the source of revenue is a patent. To the extent that the social value differs from our estimates,

and particularly if it does not decrease, then offering prizes instead of patents seems an efficient

way of providing incentives to the private sector to produce a vaccine.
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5 Concluding Comments

The goal of this paper is to analyze the optimal choice of stay-at-home policies in Phase I

and stay-at-home and vaccination policy in Phase II. Optimal policies have a shock treatment

aspect to them: strict lock-down initially with gradual liberalization that occurs before the peak

of the epidemic. Similarly, the optimal vaccination policy is to vaccinate at capacity initially

before converging to a steady state determined by the effectiveness of the vaccine or reinfection

rate. Our novel finding is that pre-vaccination policies depend heavily on what happens after

vaccine arrival (vaccination rate) and the probability of the arrival of a vaccine, and thus any

analysis that does not model the post-vaccine phase in a realistic manner would recommend

incorrect policies. The market value of a vaccine decreases rapidly—especially if the infection

curve is not flattened under the optimal policy. The value that society places in individual

life has a first-order effect on the optimal stay-at-home policy. This, in turn, determines the

severity and duration of the recession associated with the epidemic. In many of our scenarios,

the ex-post cost of averting a death is large and in the baseline case exceeds $2 million. Our

results illustrate that uncertainty about some features of the environment (e.g., the parameters

that define the epidemiological model and the public health infrastructure) have a large impact

on the optimal policy. Thus, producing better estimates of these key elements should be a

priority in the policy area.
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6 Appendix 1: Proofs

Discussion of Phase II Optimal Policy Let the value function of this problem satisfy the

following HJB equation:

ρF (S, I, V ) = max
(0≤φ≤1 , 0≤µ≤µ̄)

{u(φw(1− ζI)− cV (µ(1− V )))−∆
[
(D1, D+

]
)

+FS
[
−βφ2(1− ζ)SI − (µ+ γ + π)S + γ

]
+ FI

[
βφ2(1− ζ)SI − (κ+ µ+ γ) I + πS

]
}.

The associated Hamiltonian is

HII = max
(0≤φ≤1 , 0≤µ≤µ̄)

u(φw(1− ζI)− cV (µ(1− V )))−∆
[
D1, D+

]
+λS

[
−βφ2(1− ζ)SI − (µ+ γ + π)S + γ

]
+ λI

[
βφ2(1− ζ)SI − (κ+ µ+ γ) I + πS

]
+λV (µ(1− V )− γV ) + γ̂φ(1− φ) + γ̂I+(µ̄− µ) + γ̂I−µ.

The FOC are standard and given by the static conditions

u′()w(1− ζI) = 2βφ(1− ζ)SI (λS − λI) + γ̂φ, (10)

γ̂φ(1− φ) = 0

and

− u′()c′V (µ(1− V )) + λV µ(1− V ) = λSS + λII − γ̂I− + γ̂I+, (11)

where we omit the arguments in the utility function to keep the expression simple. The con-

straints imply that γ̂I+(µ̄− µ) = 0, and γ̂I−µ = 0.

In the interior case, that is, when φ ∈ (0, 1), given that λS = FS and λI = FI , equation (10)

can be written as,

u′(φw(1− ζI)− cV (µ(1− V )))w(1− ζI)

2βφ(1− ζ)SI
= (FS − FI) ,

which corresponds to equation (9) in the text.

Proof. In using the Hamiltonian HII , care must be taken since the function ∆ [D1, D+] has a

kink at the hospital capacity level. Since we are trying to establish the existence of a steady

state with arbitrarily small levels of infectious individuals, we will take the derivative of the

function ∆ [D1, D+] as if the level is below the hospital capacity. Thus, the relevant derivative

with respect to I is

∆′ = M0kaχhζκ

Consider first Phase II. The relevant co-state variables evolve according to the following

differential equations (again omitting the arguments in the function u′())

λ̇S = (ρ+ µ+ γ + π)λS + (λS − λI) βφ2(1− ζ)I − λIπ,
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λ̇I = u′()wφζ + ∆′ (12)

+ (ρ+ κ+ µ+ γ)λI + (λS − λI) βφ2(1− ζ)S,

λ̇V = (ρ+ µ+ γ)λV − u′()c′V µ

The static first-order conditions are equations (10) and (11).

We conjecture that there is a steady state such that φ∗ = 1 and µ∗ = 0 when (γ, π) are

arbitrarily small. Consider first the steady-state values of the state variables when π = 0 under

the conjectured optimal policy. In this steady state the epidemiological variables satisfy

β(1− ζ)S∗ = κ+ γ, (13)

and

I∗ =
γ

γ + κ
(1− S∗). (14)

It suffices to show that the system of equations that is implied by λ̇S = λ̇I = λ̇V = 0 has a

solution evaluated at the candidate steady state and satisfies equations (10) and (11).

Simple calculations show that λ̇S = λ̇I = λ̇V = 0 imply

λ∗S =
β(1− ζ)I∗ (u′()ζw + ∆′)

Λ
(15)

and

λ∗I = −(γ + ρ+ β(1− ζ)I∗) (u′()ζw + ∆′)

Λ
, (16)

λ∗V = 0 (17)

where

Λ = ρ (γ + ρ+ β(1− ζ)I∗) + β(1− ζ)I∗ (γ + κ) .

To complete the argument, it suffices to show that equations (10) and (11) hold as inequalities

(ignoring the Lagrange multipliers). Some standard manipulations show that this is equivalent

(in the case of equation (10)) to

u′()(1− ζ γ
γ+κ

(1− S∗))
u′()wφζ + ∆′

>
2γ

Λ

[
ρ+ γ + 2β(1− ζ)

γ

γ + κ
(1− S∗)

]
.

Since for arbitrarily small γ the left-hand-side remains bounded away from zero (it is actually

increasing) and the right-hand-side converges to zero; this conditions is satisfied for sufficiently

small (γ, π).

To check that equation (11) holds as well, it suffices to show that

−u′()c′V () <
(u′()ζw + ∆′)

Λ

γ

γ + κ
(1−S∗)

[
(κ+ γ)−

(
γ + ρ+ β(1− ζ)

γ

γ + κ
(1− S∗)

)]
(18)

and this holds for sufficiently small γ.
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Next we show that the same steady state is a rest point of the dynamical system associated

with the optimal solution in Phase I. The Hamiltonian in this case is

HI = u(φw(1− ζI)−∆
[
(D1, D+

]
+ ηF (S, I) + ψS

[
−βφ2(1− ζ)SI − (γ + π)S + γ

]
+ψI

[
βφ2(1− ζ)SI − (κ+ γ) I + πS

]
,

where µ is exogenously set equal to zero and the relevant discount factor during Phase I is ρ+η.

We assume that the function F (S, I, V ) is differentiable for small values of I, and we look

at the limiting behavior of the relevant dynamical system along a path in which the Poisson

counter never goes off under the assumption that in the limit φ∗ = 1. The steady state (again

set π = 0) is such that

ψ∗S =
η(ρ+ η)F ∗S − (β(1− ζ)I∗ + π) (− (u′()wζ + ∆′) + ηF ∗I )

Λ̃
,

ψ∗I =
(ρ+ η + γ + β(1− ζ)I∗) (− (u′()wζ + ∆′) + ηF ∗I ) + ηF ∗S (κ+ γ)

Λ̃
,

where

Λ̃ = (ρ+ η + γ + β(1− ζ)I∗)(ρ+ η) + β(1− ζ)I∗ (γ + κ) ,

and

F ∗S = λ∗S and F ∗I = λ∗I .

The sufficient condition to guarantee that φ∗ = 1 is

u′()w(1− ζI∗) > 2 (ψ∗S − ψ∗I ) β(1− ζ)S∗I∗, (19)

where, as in Phase II,

S∗ =
γ + κ

β(1− ζ)
and I∗ =

γ

γ + κ
(1− S∗).

The left-hand-side of equation (19) remains positive (and strictly bounded away from zero) as

γ goes to zero. The right-hand-side converges to zero since I∗ goes to zero as γ → 0.
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Appendix 2: Computational Appendix

D1
t = χκζhIt

D+
t = (χH − χ)(κζhIt − H̄)+

∆(D1, D+) = M0

[
kaD

1
t + keD

+
t

]
Writing the HJB equations for the two phases,

ρF (S, I, V ) = max
(0≤φ≤1 , 0≤µ≤µ̄)

{u(φw(1− ζI)− cV (µ(1− V )))−∆
[
(D1, D+

]
)

+FS
[
−βφ2(1− ζ)SI − (µ+ γ + π)S + γS

]
+ FI

[
βφ2(1− ζ)SI − (κ+ µ+ γ) I + πS

]
+FV [µ(1− V )− γV ]}.

ρJ(S, I) = max
(0≤φ≤1)

{u(φw(1− ζI))−∆
[
(D1, D+

]
)

+JS
[
−βφ2(1− ζ)SI + γ(1− S)

]
+ JI

[
βφ2(1− ζ)SI − (κ+ γ) I

]
}.

Discrete Version of HJB

We discretize the above HJB equations and solve the weekly model using value function itera-

tion. Given the model is highly non-linear, we solve the problem over a fine grid and restrict

the interest region to 0 ≤ S + I ≤ 1.

Phase II

F (St, It, Vt) = max
(0≤φ≤1 , 0≤µ≤µ̄)

{
(1− e−ρ∆)

ρ

(
u(φw(1− ζI)− cV (µ(1− V )))−∆(It)

)
+

e−ρ∆F (St+∆, It+∆, Vt+∆)

}
St+∆ = St +

[
−βφ2(1− ζ)SI − (µ+ γ + π)S + γS

]
∆

It+∆ = It +
[
βφ2(1− ζ)SI − (κ+ µ+ γ) I + πS

]
∆

Vt+∆ = Vt + [µ(1− V )− γV ] ∆

Phase I

J(St, It) = max
(0≤φ≤1)

{
(1− (e−(ρ+η)∆)

ρ+ η

(
u(φw(1− ζI))−∆(It)+

ηF (St, It, 0)

)
+ e−(ρ+η)∆J(St+∆, It+∆)

}
St+∆ = St +

[
−βφ2(1− ζ)SI − (γ + π)S + γS

]
∆

It+∆ = It +
[
βφ2(1− ζ)SI − (κ+ γ) I + πS

]
∆
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Appendix 3: Calibration

1. Utility We consider log utility. We also assume that minimum consumption, c = (1-c0)w.

Hence,

u(φw(1− ζI)− cV (µ(1− V ))) = ln [φwL− cV (µ(1− V ))− (1− c0)w] .

If there is no vaccination and φ = L = 1, 1− c0 is the fraction of steady-state output that

captures the minimum level of consumption.

We assume that c0 = 0.6 and, hence, that output cannot fall below 40% of its steady-state

value, if the vaccination is low.

2. Vaccination

(a) The cost of vaccination:

cV (µ(S + (1− ζ)I)) = c0
V (µ(S + (1− ζ)I))1+c1V .

Baseline: c0
V = 0.1w, c1

V = 0.

(b) Vaccination capacity We set µ̄ = 0.036

3. Epidemiological Parameters

(a) The Fraction ζ. A difficulty estimating ζ is the lack of random testing at this point

and the ad-hoc assumptions about mortality that have to be made to produce es-

timates. Hortacsu et al. (2020) estimate a range for ζ. Their results—based on

data prior to the institution of stay-at-home policies in many states in early March

2020—imply that ζ ∈ [0.4, 0.25]. Li et al. (2020) use a different approach and rely

on Chinese data estimate ζ = 0.04. More recent evidence give a range between 0.10

and 0.30. We assume ζ = 0.25.

(b) The Fatality Rate. What are the implied case fatality rates? We assume that the

flow of deaths is given by Dt = χκhζIt. There are several assumptions underlying

this definition. First, we assume that the individuals who die from the flow out of

the infectious category (κIt) must have shown symptoms (hence the flow is κζIt)

and were hospitalized (the flow is κhζIt). For this subset the fatality rate is χ. Then

the fatality rate for the overall symptomatic population is χh. In the US at the time

of this writing, the measured death rate is about 2%, while for the world as a whole

it exceeds 3%. At the same time there are some countries—including several Latin

American countries—in which the case fatality rate is below 1%. Thus, it seems

that χ = 0.3 given a hospitalization rate of h = 0.056 is a reasonable estimate. This

implies a measured case-fatality rate of 1.68%.
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(c) The Recovery Rate κ. If, on average, individuals exit the infected category (to either

resistant or deceased) in 3 weeks, then κ = 1/3 = 0.33.

(d) The Gross Transmission Rate β. We view estimates of R0 as more reliable than

estimates of β. Our strategy is to use estimates of R0 to estimate β. In our base case

R0 = 2.8. Then given
β(1− ζ)

κ
= R0,

we estimate β as

β =
κ×R0

1− ζ
=

0.33× 2.8

0.75
= 1.232.

There is significant uncertainty about the relevant value of R0. Many studies put

the range of R0 between 1.5 and 4.0. A recent study by Fernandez-Villaverde and

Jones (2020) that matches the evidence with the SIR model—but that imposes an

arbitrary sequence φt—estimates that R0 = 4.2 and even higher in some European

countries.

Baseline: β = 1.1

4. Economic/Institutional Parameters

(a) Output per worker Our unit of analysis is an individual. We assume that there are

328 × 106 individuals and GDP of $20 trillion/year. Thus, output per worker per

week is $1,173:

w = 1, 173.

(b) Discount factor We assume that the annual discount factor ρ is somewhere between

1 and 3%. The base case is ρ = 0.0123 on an annual basis. Since the model is weekly

we have that

ρ = 0.000236.

This value has the “property” that the present discounted value of weekly output of

the average worker (who earns twice as much as the average person since only 50%

of the population work) satisfies

2, 331

0.000233
= 10, 000, 000

which is not an unreasonable number.

5. The ∆ function.

(a) Base Case: Estimation of M0. The constant is given by

ln (υw − c
¯
)

1− e−ρT

ρ
.
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In the baseline, we assume that υ = 20 and the implied present value of consumption

(using the same life expectancy) is $11.25M, which is on the high side. Thus we have

the following values:

Present Value of Consumption υ M0

16,990,933 30 5116

11,250,753 20 4914

2,640,482 5 4205

6. Definition: Rt

Rt =
β(1− ζ)φ2

tSt
κ

.

7. Next we pick γ. In our baseline, γ = 0.02, i.e., 2% of the recovered + vaccinated become

susceptible in unit time. This is likely an upper bound based on the evidence so far, so

we also consider γ = 0.00025 in the exercise.

Table 1: Baseline Parameters
Meaning Parameter Value

Fraction Diagnosed among Infected ζ 0.25

Immunity Loss Rate γ 0.02

Basic Reproduction Number R0 2.8

Recovery Rate κ 0.33

Discount Rate ρ 0.000233

Time Step ∆ 1/5

Loss function v 20

Output per Worker w 1173

Mortality parameter χ 0.3

Mortality due to Overwhelming of Hospitals χH 2.5 χ

Fraction Hospitalized h 0.056

Hospital Duration κH 1/3

Hospital Capacity H̄ 0.05

Vaccine Cost cv 0.1w

Vaccination capacity µ 0.036

Minimum Consumption (1-c0) c0 0.60

Vaccine Arrival Poisson η 1/50

Exogenous Source of Infection π 0.0005

Initial I0 I0 0.01

Initial S0 S0 0.99
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Appendix 4: Behavioral Model

In this section, we outline a simple model that captures the behavioral response to individual

risks associated with the infection (see, for e.g. Bisin and Gottardi (2021) for a model with

externalities). Individuals differ along three dimensions: i) their risk assessment while working,

σ(i), ii) their risk assessment while not working, ν(i), with ν(i) < σ(i) as working increases the

probability of infection, and iii) their disutility cost from losing a job, λ(i). Workers choose

whether or not to work, and we allow for some workers to be forced to not work to capture the

impact of closures in activities where there is no option of working from home (e.g., restaurants).

There are three types of workers: those who a) work, b) choose not to work, and c) are

forced to not work, with measure πt. We assume that everyone has the same consumption and

same private perception of risk, H(D,D+), which depends on the aggregate flow of deaths and

deaths due to hospital capacity. Flow utility of three types of workers is as follows:

a) work: u(c− c̄)− σ(i)H(D1, D+)

b) choose not to work: u(c− c̄)− λ(i)− ν(i)H(D1, D+)

c) forced to not work: u(c− c̄)− ν(i)H(D1, D+)

Let the measure of agents be denoted by K. The measure of individuals who can work is

(1− πt). Among the individuals who can work, individuals who choose to work satisfy

λ(i)

σ(i)− ν(i)
≥ H(D1, D+)

Let A(D1, D+) ≡
{
i s.t.

λ(i)

σ(i)− ν(i)
≥ H(D1, D+)

}
Let Ac(D1, D+) be the complement of A(D1, D+).

Thus,

φt = (1− πt)K(A(D1, D+))

If we assume that the government implements a transfer policy that equalizes consumption

across the three different types, aggregate preferences are given by

u(ct − c̄)−
[
(1− πt)

∫
A(D1

t ,D
+
t )

σ(i)dK(i)

+(1− πt)
∫
Ac(D1,D+)

ν(i)dK(i) + πt

∫
A(D1

t ,D
+
t )∪Ac(D1,D+)

ν(i)dK(i)

]
H(D1

t , D
+
t )

−
∫
Ac(D1,D+)

λ(i)dK(i)
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Therefore, the loss function can be interpreted as

∆(D1
t , D

+
t ) =

[
(1− πt)

∫
A(D1

t ,D
+
t )

σ(i)dK(i) + (1− πt)
∫
Ac
ν(i)dK(i) + πt

∫
A(D1

t ,D
+
t )∪Ac

ν(i)dK(i)

]
H(D1

t , D
+
t ) +

∫
Ac
λ(i)dK(i),

and this utilitarian objective function coincides with the social preferences that we use.

Appendix 5: Literature Review

We are fully aware that this summary is incomplete and that closely related research is probably

missing. However, we still want to acknowledge some of the recent work in the topic, and found

useful to group different papers in different categories, with the obvious caveat that these are

imperfect and that there exists a substantial amount of overlap in the existing work.

Optimal management of the epidemic in SIR models: These papers use optimal

control techniques to explore the management of an epidemic. See Alvarez, Argente, and Lippi

(2020), Gonzalez-Eiras and Niepelt (2020), Acemoglu, Chernozhukov, Werning, and Whinston

(2020), Jones, Philippon, and Venkateswaran (2020), Piguillem and Shi (2020).

Policies in an SIR models: These papers explore the effects of different policies in the

dynamics of the epidemic (i.e., social distancing, lockdown, etc. . . ) in SIR models developed

by Kermack and McKendrick (1927). See for example, Atkeson (2020), Berger, Herkenhoff,

and Mongey (2020), Neumeyer (2020), Bassetto (2020), Droz and Tavares (2020), Hsiang et al.

(2020), Fang, Wang, and Yang (2020), Shao (2020), Wang et al. (2020). Avery, Bossert, Clark,

Ellison, and Ellison (2020), Farboodi, Jarosch, and Shimer (2020), Aum, Lee, and Shin (2020).

Glover, Heathcote, Krueger, and Rı́os-Rull (2020), Pindyck (2020), Chang and Velasco (2020).

Measurement issues: These papers discuss measurement issues in the data or key pa-

rameters on SIR model (Stock 2020, Korolev, 2020, Kubinec, 2020, Manski and Molinari 2020,

Fernández-Villaverde and Jones 2020, Hortacsu, Liu and Schwieg 2020, Harris 2020, Blavin and

Arnos, 2020, Greenstone and Nigam 2020, Hall, Jones, and Klenow 2020).

Macroeconomic implications of epidemics: Some of the research provides a histor-

ical perspective by analyzing the economic implications of past pandemics as Adda (2016),

Barro, Ursúa, and Weng (2020), Correia, Luck, and Verner (2020), Velde (2020). A num-

ber of papers explores macro implications of epidemic shocks and policy interventions. See

Eichenbaum, Rebelo, and Trabandt (2020a,b), Fornaro and Wolf (2020), Bairoliya and Imro-

horoglu (2020), Krüger, Uhlig, and Xie (2020), Kozlowski, Veldkamp, Venkateswaran (2020),

Bodenstein, Corsetti, and Guerreri (2020), Guerrieri, Lorenzoni, Straub, and Werning (2020),

Faria-e-Castro (2020), Caballero and Simpsek (2020), as well as implications for different mar-

kets (i.e., labor market Bick and Blandin 2020, Kapicka and Rupert 2020, Dingel and Neiman

2020, Kurman, Lale, and Ta 2020, stock market i.e., Alfaro, Chari, Greenland, and Schott 2020,

Baker, Bloom, Davis, Kost, Sammon, and Viratyosin 2020, Gormsen, N. and Koijen 2020).
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